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We consider the dynamic behavior in driven phase transitions dominated either by attachment-detachment or
by surface diffusion mass transport mechanisms. As the driving force increases, we numerically demonstrate
for both cases that the spatiotemporal faceted structure of the surface undergoes a sequential transition from
slow coarsening turning to accelerated coarsening followed by fixed length scale structures before finally
becoming spatiotemporally chaotic. For the attachment-detachment dominated phase transition problem we
compare in the accelerated coarsening regime the simulation results with an intrinsic dynamical system gov-
erning the leading-order piecewise-affine dynamic surface �PADS�, which can be obtained through a matched
asymptotic analysis. The PADS predicts the numerically observed coarsening law for the growth in time of the
characteristic morphological length scale LM. In particular we determine the prefactor of the scaling law
which allows for quantitative predictions necessary for any use of the theory in preparing patterned surfaces
through modifications of the driving force.
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I. INTRODUCTION

Driven self-assembly, which naturally arises in a variety
of material science problems when bulk and surface energy
interact, offers new and rich possibilities in both theory and
applications. The self-organizing ensembles of nanofaceted
pyramids is a prominent example which has been extensively
studied in recent years. A promising approach to describe the
self-assembly is to use an effective nonconvex surface free
energy which leads to spinodal decomposition of unstable
surface orientations into faceted structures with stable orien-
tations �1,2�. The nonconvexity of the effective surface en-
ergy corresponds to a strongly anisotropic surface tension
leading to a negative surface stiffness for certain ranges of
surface orientations. Therefore the corresponding evolution
equations become ill-posed unless the additional energy of
edges and corners is included, which does lead to the depen-
dence of the surface tension on the local curvature �3,4�.
However, to date, theoretical and computational studies of
the associated surface dynamics have generally been limited
to long-wave approximations based on small variations in
surface orientation �5–9�. This introduces a clear limit to the
quantitative predictive power of the theory in relation to
large classes of experimentally observed morphologies, such
as facets which meet at high angles of incidence �10–12�.

In this paper, we present a computational study of the
coarsening-to-chaos transition of two representative driven
phase-ordering models of a thermodynamically unstable
crystal surface. The models arise from attachment-limited
growth and growth governed by surface diffusion. We will
not employ any long-wave approximation and therefore are
able to explore the full geometric theory.

II. GEOMETRIC MODEL

We consider two types of surface evolutions, which are
given in nondimensional form terms of a nondimensional
thermodynamic surface free energy E and a nondimensional
driving force � as

Vn = −
�E

�I
+ � , �1�

Vn = �I
�E

�I
+ � , �2�

where Vn denotes the normal velocity of the crystal surface
I, �E /�I denotes the functional derivative with respect to
normal variations of the surface I, and �I is the surface
Laplacian. The phenomenological equation �1� can be used
to describe attachment-detachment kinetics and can serve as
a simplified model for the interface evolution in liquid phase
epitaxy �LPE� or electrodeposition �13�. If the dominant
mass transport mechanism is surface diffusion along the sur-
face, Eq. �2� can be used as a phenomenological model, e.g.,
as a simplified surface model for chemical vapor deposition
�CVD� �8�. In the case of attachment detachment kinetics,
the driving force � is proportional to the difference between
the chemical potentials of the bulk phases, reflecting the in-
teraction of bulk energy with the surface. For the surface
diffusion dynamics, the driving force usually originates from
a deposition flux. Note that in both cases we are assuming
that the resulting material flux �i.e., the driving force� is nor-
mal to the surface, which is due to the effect of a diffusion
boundary layer whose shape follows the shape of the surface.
This is in contrast to other growth mechanisms, e.g., molecu-
lar beam epitaxy �MBE�, where the deposition flux does not
follow the morphology of the surface. As pointed out in Ref.
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�9�, in the latter case the driving force may be eliminated by
changing to a frame of reference comoving with the flat sur-
face perpendicular to the deposition flux and therefore the
strength of the driving force has no influence on the mor-
phology of the surface in that case.

The dimensionless thermodynamic surface free energy is
defined through

E�I� = �
I
���n� +

1

2
�2�dS , �3�

with � denoting an effective nonconvex surface free energy
density depending on the local orientation n and � being the
mean curvature. The curvature term models an edge energy
which is concentrated in the region where two stable facets
meet �3,4�. Note that the facets are due to the nonconvexity
and not due to cusps in the surface free energy. The curvature
term arises most naturally as the first order term in the ex-
pansion of a general surface free energy density, which for a
one-dimensional �1D� surface is given by �̂�� ,�s� , . . . � �3�, �
denoting the local tangent angle and s denoting the arc length
along the surface. The models thus define a geometric
Ginzburg-Landau theory for the morphology of crystal sur-
faces, where � corresponds to a double well potential and the
curvature term to the gradient term. With �=0, Eq. �1� is the
geometric analog of a nonconserved Allen-Cahn–type evolu-
tion law, whereas Eq. �2� is a geometric version of a con-
served Cahn-Hilliard–type evolution law.

For simplicity, we now consider the model system of 1D
surfaces with a constant driving force �	0. A direct appli-
cation for the 1D model is given in the study of self-
assembled 2D systems, e.g., Ref. �14�.

From Eqs. �1�–�3� we obtain

Vn = 
���� − �SS� −
1

2
�3 + � , �4�

Vn = �SS�− 
���� + �SS� +
1

2
�3� + � , �5�

respectively, where 
���=����+������ is the surface stiff-
ness as a function of the local tangent plane angle � relative
to the unstable orientation �=0 �i.e., 
�0��0� and �=�s� is
the curvature.

In the nondriven case ��=0�, the surface displays an
emergent morphology comprising of extended facets, with
orientations � given to leading order by the Wulff con-
struction for ����, which meet and merge over relatively nar-
row rounded edges and vertices. The surface also slowly
coarsens, and one finds LM� ln t, for the growth in time t of
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FIG. 1. Spinodal decomposition: The initially flat surface with
random perturbation 	10−3 evolves into a hill-valley structure with
wavelength �max. Surface at time t=0.0 �solid�, t=25 �dashed�, and
t=50 �dotted�.
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FIG. 2. Numerical simulation of Eq. �4� showing surface and
angle at late times for the four different regimes of the driving force
�.
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the characteristic facet length scale LM, which is consistent
with the long-wave approximation for both equations. On the
other hand, a large driving force ��1 yields an apparently
chaotic spatiotemporal surface evolution. This may be for-
mally understood by first changing to a frame of reference
comoving with the flat surface �=0 at speed �, yielding in
the new coordinates

Vn = 
���� − �SS −
1

2
�3 + ��1 − cos �� , �6�

Vn = �SS�− 
���� + �SS +
1

2
�3� + ��1 − cos �� , �7�

which results from the normal nature of the driving force as
a result of the diffusion boundary layer in the bulk phases.
Making the transformation �→� /� and t→�t reduces Eq.

�6�, in the limit �→�, to a geometric counterpart of the
Kuramoto-Sivashinsky equation, namely,

Vn = �2 − � − �SS.

Below we detail the transition between logarithmic coarsen-
ing and chaotic behavior of Eqs. �6� and �7� as one increases
the driving force �.

III. FROM COARSENING TO CHAOS

We probe both the dynamic instability of the initial orien-
tation �=0 and the resulting nonlinear evolution of the sur-
face morphology for Eqs. �6� and �7� by using an adaptive
finite element method �15–17�. Here we use a prototype non-
convex surface energy density � with stiffness


��� = 1 − � cos�4��, with � = 2,

leading to minimal stable orientations ��0.48. We find
that small initial perturbations of the surface �=0 rapidly
evolve into essentially a periodic hill-valley structure with
wavelength �=2�
2; see Fig. 1 for Eq. �6�. For Eq. �7�, a
similar result is shown in Ref. �16�, where in that case �
=2�
3 /2. This behavior is consistent with a linear stability
analysis of Eqs. �6� and �7�, which predicts exponential
growth of the Fourier mode with these wavelengths on a
time scale t to be the dominant instability. Viewing the angle
� as an order parameter, this behavior is identical to the
phase separation of a deeply quenched binary alloy, and is
commonly referred to as spinodal decomposition of the un-
stable surface.

The fully nonlinear surface dynamics that emerges be-
yond spinodal decomposition display four qualitatively dif-
ferent spatiotemporal signatures as � increases, see Fig. 2,
where the surface and angle at late times for four qualita-
tively different regimes of the driving force � in Eq. �6� are
displayed. For both Eqs. �6� and �7�, in the nondriven case
��=0� the surface is comprised of extended facets with ori-
entation �	 � which meet at relatively narrow rounded
valleys �kinks� and hill tops �antikinks�. The space-time plot

FIG. 3. �Color online� Space-time trajectories of kink �red
�black�� and antikink �blue �gray�� positions obtained by numerical
simulation of Eq. �6� with �=0, showing logarithmic slow coarsen-
ing via kink-antikink coalescence.
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FIG. 4. �Color online� Space-time trajectories of kink �red �black�� and antikink �blue �gray�� positions obtained by numerical simulation
of Eq. �6�. �Left to right� �=0.1: fast coarsening via kink-antikink-kink coalescence. �=1.0: interrupted coarsening, fixed length scale
structure as steady state. �=10.0: irregular dynamics.
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of kink and antikink trajectories reveals binary coalescence
and annihilation of kink-antikink pairs as the dominant
coarsening mechanism; see Fig. 3 for Eq. �6�. Further, we
find that the coarsening process is logarithmic in time, LM
� ln t.

For the attachment-detachment dynamics, the surface
morphology for 0���1 preserves, to leading order, the an-
nealed morphology of faceted hill-valley structure. However,
the spatiotemporal structure is dramatically different, with a
specific ternary coalescence of phase boundaries, wherein
two kinks simultaneously meet an antikink resulting in a
kink being the sole coarsening mechanism, see Fig. 4 �left�.
This behavior has previously been predicted in the long-
wave approximation �18� and is referred to as a kink-ternary
event. Periodic structure emerge for �	1; see Fig. 4
�middle�, while increasing the growth strength further ��1,

one observes rough surfaces comprised of orientations
�	0. Further, plotting the space-time trajectories for the lo-
cal minima �kinks� and maxima �antikinks� one finds an ir-
regular �chaotic� space-time structure, see Fig. 4 �right�,
which also reveals kink-ternary coarsening as well as a
unique ternary nucleation event, wherein an antikink bifur-
cates into a kink centered between two antikinks. Qualitative
similar results for the three regimes are obtain by numerical
simulations in the long-wave approximation; see, e.g., Refs.
�7,8�.

For the surface diffusion dynamics given by Eq. �7�, the
qualitative behavior is similar; see Fig. 5 for the three differ-
ent regimes of fast coarsening, periodic structures, and spa-
tiotemporal chaos. A significant difference is the lower value
for the nondimensional driving force � to form periodic
structures. Similar results, at least for the fast coarsening
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FIG. 5. �Color online� Space-time trajectories of kink �red �black�� and antikink �blue �gray�� positions obtained by numerical simulation
of Eq. �7�. �Left to right� �=0.01: fast coarsening via kink-antikink-kink coalescence. �=0.1: interrupted coarsening, fixed length scale
structure as steady state. �=10.0: irregular dynamics.
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FIG. 6. �Color online� Space-time trajectories of kink �red �black�� and antikink �blue �gray�� positions obtained by numerical simulation
of Eq. �6� with �=0.1.
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regimes have been obtained within a long-wave approxima-
tion in Ref. �9�.

IV. THE FAST COARSENING REGIME

In the following we will point out quantitative differences
to the long-wave approximation in the case of attachment-
detachment kinetics, and will therefore focus on the late-
stage fast coarsening regime of Eq. �6�, which emerges when
0���1. Large scale simulations, see Fig. 6 for a typical
example, suggest a power law LM�ct1/2 for the morpho-
logical length scale LM, as depicted in Fig. 7. Similar scal-
ing laws have also been obtained within a long-wave ap-
proximation in Ref. �7�; however, as we will point out the
prefactor significantly differs.

The following analysis has been explained to us by Wat-
son �19�. Recall that numerical simulation reveals solutions
displaying two disparate length scales at late times. Namely,
the outer scale of extended near facets wherein the surface
slope is approximately constant, �	 �, which meet and
merge over a relatively narrow rounded corner inner scale.
We rewrite Eq. �4� with respect to the outer scale s=�S, the
slow time scale �=�3t, and then transform to a frame of
reference moving vertically �=� /2, with �slow outer� speed
V= 1

cos  yielding

�Vn = 
���� − �2��SS +
1

2
�3� + �1 −

cos �

cos 
� . �8�

The outer-scale structure of the solution surface I� is ap-
proximated, to leading order, by the piecewise-affine surface
I, hereby parametrized by ��0��s ,��= �−1�i, s
� �si��� ,si+1����; here s is an arc-length parametrization of I,
and Li=si+1���−si��� is the length of the ith facet. Now, the
slope constraint ��0�= � implies that the kinematics of the
faceted surface I is captured by specifying the instantaneous
normal velocity Vi of the ith facet; we presume nucleation of
new facets is precluded. Now, we assume an outer expansion
of the form �=��0��s ,��+���1��s�+O��2�. This automatically
solves Eq. �8� to leading order, while at order O��� we obtain
on the ith facet

Vi = 
���s
�1� + �− 1�i tan ��1�. �9�

To obtain boundary conditions on ��1� we examine the inner
structure of the solution � centered on the moving vertices I.

Assuming an asymptotic expansion of the form �=�0�S ,��
+��1�S ,��+O��2� yields, upon insertion into Eq. �8� and
gathering together terms of order O�1�,


��0�
d�0

dS
− �d3�0

dS3 +
1

2
�d�0

dS
�3� = 0. �10�

One easily finds, from applying elementary geometric iden-
tities �20�, the first integral

K =
d�0

dS
=
2����0� − ���

cos �0

cos 
� .

At O��� we have

d

dS
�
��0��1� − �d3�1

dS3 +
3

2
�d�0

dS
�2d�1

dS
� = 1 −

cos �0

cos 
.

Letting �� denote the asymptotic value of the symmetric
time-independent solution �1�S�, �1����= ��, we nu-
merically find �=0.119. Matching the inner-outer structure
of � we conclude
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data are obtained by averaging over five runs of solving Eq. �6�
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��1��si���+� = � and ��1��si+1���−� = − � . �11�

The solvability of Eq. �9� subject to Eq. �11� automatically
yields

Vi = � tan 1 + 2�exp� tan 


��
Li� − 1�−1� . �12�

This intrinsic characterization of the facet velocities Vi
uniquely identifies the evolution between coarsening events
of the leading-order piecewise-affine surface I, a so-called
piecewise-affine dynamic surface �PADS� �21�. It will be
convenient to recast this PADS in terms of an equivalent
coarsening dynamical system �CDS� �18� for the evolution of
the projection xi of the ith vertex of ��0�. One finds

ẋi =
�− 1�i

sin 
��Ĵ�xi+1 − xi� − Ĵ�xi − xi−1�� , �13�

where Ĵ�L�ª �exp� tan 

��L�−1�−1. This is the geometric exten-

sion of the long-wave theory developed in Ref. �18�. Assum-

ing the dynamic scaling hypothesis and noting that Ĵ�L�
	1 /L as L→0+, it follows that the asymptotic invariance of
Eq. �13� under the spatiotemporal scaling L→�L and �
→�2� implies the power law scaling LM���	c�1/2, pro-
vided LM�1; see Fig. 7. In particular, Eq. �13� predicts the
prefactor in the power law scaling as a function of the facet
angle  as LM���=cstatc���1/2, with cstat a constant depend-
ing on the statistics of the initial configuration and c�� de-
pending explicitly on the equilibrium Wulff slope. As
pointed out in Ref. �22� the nontrivial information in scaling
laws resides in the prefactor. As the obtained relation is
unique to the full geometric description of the surface it fur-
ther shows the limitation of the long-wave approximation if
quantitative results are required. The obtained relation is not
limited to the specific form of the used anisotropy function
and thus provides the materials-specific information which
might give insight into detailed material transport phenom-
ena along the surface.

Stationary periodic solutions of Eq. �8� comprising of
equally spaced hills �antikinks� and valleys �kinks� exist, al-
beit they are unstable to coarsening. We present in Fig. 8 a
direct comparison of a numerically computed periodic mor-
phology with a matched asymptotic composite solution de-
rived from the described theory. The shape asymmetry be-
tween kink and antikink, induced by the driving force �, is
clearly well captured by the asymptotic outer solution.

Recall that the alternating-nearest-neighbor structure of

Eq. �13�, combined with the fact that Ĵ�L�	1 /L as L→0+,
implies the nonexistence of binary coarsening events �18�.
Furthermore, it also follows that the only possible coarsening
event involves two kinks simultaneously converging on the
intervening antikink with the result that a single kink
emerges �18�; the so-called kink ternary. Taking therefore a
periodic profile as shown in Fig. 9 as a suitable probe of the
spatiotemporal coarsening, we not only confirm the conver-

gence of Eq. �8� to the asymptotic theory �13� as �→0, but
also show the persistence of the kink ernary well beyond the
range where the asymptotic theory applies.

V. CONCLUSIONS

In conclusion, for driven geometric surface evolution
problems we have delineated, in terms of the driving force
strength �, four distinct spatiotemporal regimes. Our results
qualitatively confirm that the spatiotemporal structure of the
associated long-wave theories persists into the large-slope
regime. Further, we have theoretically characterized, via a
matched asymptotic analysis, the piecewise-affine dynamic
surface �PADS� associated with the accelerated coarsening
regime 0���1 in the case of attachment-detachment kinet-
ics. The PADS predicts the scaling law LM=cstatc��t1/2 with
a universal scaling exponent and a computed prefactor which
depends explicitly on the equilibrium Wulff slope . Extend-
ing these results for 2D surfaces and/or computing the bulk
effects are problems which warrant further study. Possible
numerical approaches have been developed in Refs. �23,24�.
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